*据中国战国时尸佼着《尸子》记载:“古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”,这相当于在公元前2500年前,已有“圆、方、平、直”等形的概念。
*公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。
*公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。
*公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道“勾股定理”
公元前600--1年
*公元前六世纪,发展了初等几何学(古希腊 泰勒斯)。约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。公元前六世纪,印度人求出√2=1.4142156。
*公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊 巴门尼德、芝诺等).。
*公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。
*公元前四世纪,把比例论推广到不可通约量上,发现了“穷竭法”(古希腊 欧多克斯)。 公元前四世纪,古希腊德谟克利特学派用“原子法”计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的“原子”所组成。公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊亚里士多德等)。 公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊密内凯莫)。
*公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊 欧几里得)。 公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊阿基米德)。 公元前三世纪,筹算是当时中国的主要计算方法。
*公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论着(古希腊 阿波罗尼)。
*约公元前一世纪,中国的《周髀算经》发表。其中阐述了“盖天说”和四分历法,使用分数算法和开方法等。 公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为“九宫算”这被认为是现代“组合数学”最古老的发现。
400年
*继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专着,收集了246个问题的解法。
*一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊梅内劳)。 一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的“希隆公式”(古希腊 希隆)。
*100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊托勒密)。
*三世纪时,写成代数着作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊 丢番都)。三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国 赵爽)。 三世纪至四世纪魏晋时期,发明“割圆术”,得π=3.1416(中国 刘徽)。三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国 刘徽)。
*四世纪时,几何学着作《数学集成》问世,是研究古希腊数学的手册(古希腊 帕普斯)。
401-1000年
*五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国祖冲之)。 五世纪,着书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度 阿耶波多)。 六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国 祖暅)。
*六世纪,隋代《皇极历法》内,已用“内插法”来计算日、月的正确位置(中国刘焯)。
*七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax+by=c(a,b,c,是整数)的第一个一般解(印度 婆罗摩笈多)。七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国 王孝通)。 七世纪,唐代有《“十部算经”注释》。“十部算经”指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国李淳风等)。
*727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国僧一行)。
*九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯阿尔·花刺子模)。
1001-1500年
*1086-1093年,宋朝的《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究(中国沈括)。十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯阿尔·卡尔希)。 十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯 卡牙姆)。
*十一世纪,解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角(埃及阿尔·海赛姆)。 十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,列出二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法(中国贾宪)。
*十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要着作(印度拜斯迦罗)。
*1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利费婆拿契)。1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利 费婆拿契)。1247年,宋朝的《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国秦九韶)。1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述“天元术”的着作(中国 李治)。1261年,宋朝发表《详解九章算法》,用“垛积术”求出几类高阶等差级数之和(中国杨辉)。1274年,宋朝发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法(中国杨辉)。1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。
*1303年,元朝发表《四元玉鉴》三卷,把“天元术”推广为“四元术”(中国朱世杰)。
*1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国约·米勒)。1494年,发表*《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识(意大利帕奇欧里)。
1501-1600年
*1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利 卡尔达诺、非尔洛)。
*1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利 邦别利)。
*1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国韦达)。
*1596─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国 奥脱、皮提斯库斯)。
1601-1650年
*1614年,制定了对数(英国 耐普尔)。
*1615年,发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积(德国刻卜勒)。
*1635年,发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分(意大利卡瓦列利)。
*1637年,出版《几何学》,制定了解析几何。把变量引进数学,成为“数学中的转折点”,“有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了”(法国笛卡尔)。
*1638年,开始用微分法求极大、极小问题(法国 费尔玛)。
*1638年,发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就(意大利 伽里略)。
*1639年,发行《企图研究圆锥和平面的相交所发生的事的草案》,是近世射影几何学的早期工作(法国 德沙格)。
*1641年,发现关于圆锥内接六边形的“巴斯噶定理”(法国 巴斯噶)。
*1649年,制成巴斯噶计算器,它是近代计算机的先驱(法国巴斯噶)。
1651-1700年
*1654年,研究了概率论的基础(法国巴斯噶、费尔玛)。
*1655年,出版《无穷算术》一书,第一次把代数学扩展到分析学(英国瓦里斯)。
*1657年,发表关于概率论的早期论文《论机会游戏的演算》(荷兰惠更斯)。
*1658年,出版《摆线通论》,对“摆线”进行了充分的研究(法国巴斯噶)。
*1665─1676年,牛顿(1665─1666年)先于莱布尼茨(1673─1676年)制定了微积分,莱布尼茨(1684─1686年)早于牛顿(1704─1736年)发表微积分(英国牛顿,德国 莱布尼茨)。
*1669年,发明解非线性方程的牛顿-雷夫逊方法(英国 牛顿、雷夫逊)。
*1670年,提出“费尔玛大定理”,预测:若X,Y,Z,n都是整数,则Xn+Yn=Zn当n>2时是不可能的(法国费尔玛)。
*1673年,发表《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线(荷兰惠更斯)。
*1684年,发表关于微分法的着作《关于极大极小以及切线的新方法》(德国莱布尼茨)。1686年,发表了关于积分法的着作(德国莱布尼茨)。
*1691年,出版《微分学初步》,促进了微积分在物理学和力学上的应用及研究(瑞士约·贝努利)。
*1696年,发明求不定式极限的“洛比达法则”(法国 洛比达)。
*1697年,解决了一些变分问题,发现最速下降线和测地线(瑞士约·贝努利)。
1701-1750年
*1704年,发表《三次曲线枚举》、《利用无穷级数求曲线的面积和长度》、《流数法》(英国牛顿)。
*1711年,发表《使用级数、流数等等的分析》(英国牛顿)。
*1713年,出版概率论的第一本着作《猜度术》(瑞士雅·贝努利)。
*1715年,发表《增量方法及其他》(英国布·泰勒)。
*1731年,出版《关于双重曲率的曲线的研究》是研究空间解析几何和微分几何的最初尝试(法国克雷洛)。
*1733年,发现正态概率曲线(英国 德·穆阿佛尔)。
*1734年,贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机(英国贝克莱)。
*1736年,发表《流数法和无穷级数》(英国 牛顿)。1736年,出版《力学、或解析地叙述运动的理论》,是用分析方法发展牛顿的质点动力学的第一本着作(瑞士 欧勒)。
*1742年,引进了函数的幂级数展开法(英国马克劳林)。
*1744年,导出了变分法的欧勒方程,发现某些极小曲面(瑞士欧勒)。
*1747年,由弦振动的研究而开创偏微分方程论(法国 达兰贝尔等)。
*1748年,出版了系统研究分析数学的《无穷分析概要》,是欧勒的主要着作之一(瑞士欧勒)。
1751-1800年
*1755─1774年出版《微分学》和《积分学》三卷。书中包括分方程论和一些特殊的函数(瑞士欧勒)。
*1760─1761年,系统地研究了变分法及其在力学上的应用(法国拉格朗日)。
*1767年,发现分离代数方程实根的方法和求其近似值的方法(法国拉格朗日)。
*1770─1771年,把置换群用于代数方程式求解,这是群论的开始(法国拉格朗日)。
*1772年,给出三体问题最初的特解(法国拉格朗日)。
*1788年,出版《解析力学》,把新发展的解析法应用于质点、刚体力学(法国拉格朗日)。
*1794年,流传很广的初等几何学课本《几何学概要》(法国勒让德尔)。1794年,从测量误差,提出最小二乘法,于1809年发表(德国 高斯)。
*1797年,发表《解析函数论》不用极限的概念而用代数方法建立微分学(法国拉格朗日)。
*1799年,创立画法几何学,在工程技术中应用颇多(法国蒙日)。1799年,证明了代数学的一个基本定理:实系数代数方程必有根(德国 高斯)。
1801-1850年
*1801年, 出版《算术研究》,开创近代数论(德国高斯)。
*1809年,出版了微分几何学的第一本书《分析在几何学上的应用》(法国蒙日)。
*1812年,《分析概率论》一书出版,是近代概率论的先驱(法国拉普拉斯)。
*1816年,发现非欧几何,但未发表(德国高斯)。
*1821年,《分析教程》出版,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等(法国柯西)。
*1822年,系统研究几何图形在投影变换下的不变性质,建立了射影几何学(法国彭色列)。1822年,研究热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响(法国傅立叶)。
*1824年,证明用根式求解五次方程的不可能性(挪威阿贝尔)。
*1825年,发明关于复变函数的柯西积分定理,并用来求物理数学上常用的一些定积分值(法国柯西)。
*1826年,发现连续函数级数之和并非连续函数(挪威阿贝尔)。1826年,改变欧几理得几何学中的平行公理,提出非欧几何学的理论(俄国 罗巴切夫斯基,匈牙利 波约)。
*1827-1829年,确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用(德国雅可比,挪威阿贝尔,法国勒让德尔)。
*1827年,建立微分几何中关于曲面的系统理论(德国高斯)。1827年,出版《重心演算》,第一次引进齐次坐标(德国梅比武斯)。
*1830年,给出一个连续而没有导数的所谓“病态”函数的例子(捷克波尔查诺)。1830年,在代数方程可否用根式求解的研究中建立群论(法国伽罗华)。
*1831年,发现解析函数的幂级数收敛定理(法国柯西)。1831年,建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性(德国高斯)。
*1835年,提出确定代数方程式实根位置的方法(法国斯特姆)。
*1836年,证明解析系数微分方程式解的存在性(法国柯西)。1836年,证明具有已知周长的一切封闭曲线中包围最大面积的图形必定是圆(瑞士史坦纳)。
*1837年,第一次给出了三角级数的一个收敛性定理(德国狄利克莱)。
*1840年,把解析函数用于数论,并且引入了“狄利克莱”级数(德国狄利克莱)。
*1841年,建立了行列式的系统理论(德国雅可比)。
*1844年,研究多个变元的代数系统,首次提出多维空间的概念(德国格拉斯曼)。
*1846年,提出求实对称矩阵特征值问题的雅可比方法(德国雅可比)。
*1847年,创立了布尔代数,对后来的电子计算机设计有重要应用(英国布尔)。
*1848年,研究各种数域中的因子分解问题,引进了理想数(德国库莫尔)。1848年,发现函数极限的一个重要概念--一致收敛,但未能严格表述(英国斯托克斯)。
*1850年,给出了“黎曼积分”的定义,提出函数可积的概念(德国黎曼)。
1851-1900年
*1851年,提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明(德国黎曼)。
*1854年,建立更广泛的一类非欧几何学--黎曼几何学,并提出多维拓扑流形的概念(德国黎曼)。开始建立函数逼近论,利用初等函数来逼近复杂的函数。二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展(俄国契比雪夫)。
*1856年,建立极限理论中的ε-δ方法,确立了一致收敛性的概念(德国外尔斯特拉斯)。
*1857年,详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数(德国黎曼)。
*1868年,在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素(德国普吕克)。
*1870年,发现李群,并用以讨论微分方程的求积问题(挪威李)。 给出了群论的公理结构,是后来研究抽象群的出发点(德国克朗尼格)。
*1872年,数学分析的“算术化”,即以有理数的集合来定义实数(德国戴特金、康托尔、外耳斯特拉斯)。发表了“爱尔朗根计划”,把每一种几何学都看成是一种特殊变换群的不变量论(德国克莱茵)。
*1873年,证明了π是超越数(法国埃尔米特)。
*1876年,《解析函数论》发行,把复变函数论建立在幂级数的基础上(德国外尔斯特拉斯)。
*1881-1884年,制定了向量分析(美国吉布斯)。1881-1886年,连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论(法国 彭加勒)。
*1882年,证明了 是超越数(德国林德曼)。 制定运算微积,是求解某些微分方程的一种简便方法,工程上常有应用(英国亥维赛)。
*1883年,建立集合论,发展了超穷基数的理论(德国康托尔)。
*1884年,《数论的基础》出版,是数理逻辑中量词理论的发端(德国弗莱格)。
*1887-1896年,出版了四卷《曲面的一般理论的讲义》,总结了一个世纪来关于曲线和曲面的微分几何学的成就(德德国达尔布)。
*1892年,建立运动稳定性理论,是微分方程定性理论的重要方面(俄国李雅普诺夫)。1892-1899年,创立自守函数论(法国 彭加勒)。
*1895年,提出同调的概念,开创代数拓扑学(法国彭加勒)。
*1899年,《几何学基础》出版,提出欧几里得几何学的严格的公理系统,对数学的公理化思潮有很大影响(德国希尔伯特)。瑞利等人最早提出基于统计概念的计算方法--蒙太卡诺方法的思想。二十世纪二十年代柯朗(德)、冯.诺伊曼(美)等人发展了这个方法。后在电子计算机上获得应用。提出数学上未解决的23个问题,引起了20世纪许多数学家的注意(德国希尔伯脱)。
1901-1910年
*1901年,严格证明狄利克雷原理,开创变分学的直接方法,在工程技术的计算问题中有很多应用(德国希尔伯特)。首先提出群的表示理论。此后,各种群的表示理论得到大量研究(德国舒尔、弗洛伯纽斯)。 基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具(意大利里齐、勒维.齐维塔)。提出勒贝格测度和勒贝格积分。推广了长度、面积积分的概念(法国 勒贝格)。
*1903年,发现集合论中的罗素悖理,出现所谓第三次数学危机(英国贝.罗素)。 建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛函分析作了准备(瑞典弗列特荷姆)。
*1906年,总结了古典代数几何学的研究(意大利赛维利等)。 把由函数组成的无限集合作为研究对象,引入函数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源(法国弗勒锡,匈牙利 里斯)。 开始系统地研究多个自变量的复变函数理论(德国哈尔托格斯)。 初次提出“马尔可夫链”的数学模型(俄国马尔可夫)。
*1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国寇贝)。反对在数学中使用排中律,提出直观主义数学(美籍荷兰人路.布劳威尔)。
*1908年,点集拓扑学形成(德国忻弗里斯)。 提出集合论的公理化系统(德国 策麦罗)。
*1909年,解决数论中着名的华林问题(德国希尔伯特)。
*1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国施坦尼茨)。 发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人路.布劳威尔)。
*1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表着作(英国贝.素、怀特海)。
1911-1920年
*1913年,完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。在量子力学和基本粒子理论中有重要应用(法国厄.加当,德国韦耳)。 研究黎曼面,初步产生了复流形的概念(德国 韦耳)。
*1914年,提出拓扑空间的公理系统,为一般拓扑学建立了基础(德国豪斯道夫)。
*1915年,把黎曼几何用于广义相对论,成为它的主要数学工具。解出球对称的场方程,从而可以计算水星近日点的移动等问题(瑞士、美籍德国人爱因斯坦,德国卡.施瓦茨西德)。
*1918年,应用复变函数论方法来研究数论,建立解析数论(英国哈台、立笃武特)。为改进自动电话交换台的设计,提出排队论的数学理论(丹麦爱尔兰)。 希尔伯脱空间理论的形成(匈牙利 里斯)。
*1919年,建立P-adic数论,在代数数论和代数几何中有重要应用(德国亨赛尔)。
1921-1930年
*1922年 提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论(德国希尔伯特)。
*1923年 提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端(法国厄·加当)。 提出偏微分方程适定性,解决二阶双曲型方程的柯西问题(法国 阿达玛)。 提出更广泛的一类函数空间——巴拿哈空间的理论(波兰 巴拿哈)。 提出无限维空间的一种测度——维纳测度,对概率论和泛函分析有一定作用(美国诺·维纳)。
*1925年 创立概周期函数(丹麦哈·波尔)。 以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法(英国费希尔)。
*1926年 大体上完成对近世代数有重大影响的理想理论(德国纳脱)。
*1927年 建立动力系统的系统理论,是微分方程定性理论的一个重要方面(美国毕尔霍夫)。
*1928年 提出解偏微分方程的差分方法(美籍德国人理·柯朗)。首次提出通信中的信息量概念(美国哈特莱)。 提出拟似共形映照理论,在工程技术上有一定应用(德国 格罗许,芬兰阿尔福斯,苏联拉甫连捷夫)。
*1930年 建立格论,是代数学的重要分支,对摄影几何、点集论及泛函分析都有应用(美国毕尔霍夫)。提出自伴算子谱分析理论并应用于量子力学(美籍匈牙利人 冯·诺伊曼)。
1931-1940年
*1931年 发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具(瑞士德拉姆)。证明了公理化数学体系的不完备性(奥地利哥德尔)。发展马尔可夫过程理论(苏联 柯尔莫哥洛夫,美国 费勒)。
*1932年 解决多元复变函数论的一些基本问题(法国亨·嘉当)。建立各态历经的数学理论(美国毕尔霍夫,美籍匈牙利人 冯·诺伊曼)。建立递归函数理论,是数理逻辑的一个分支,在自动机和算法语言中有重要应用(法国赫尔勃兰特,奥地利哥德尔,美国 克林)。
*1933年 提出拓扑群的不变测度概念(匈牙利奥·哈尔)。提出概率论的公理化体系(苏联 柯尔莫哥洛夫)。 制订复平面上的傅立叶变式理论(美国 诺·维纳、丕莱)。
*1934年 创建大范围变分学的理论,为微分几何和微分拓扑提供了有效工具(美国莫尔斯)。解决极小曲面的基本问题——普拉多问题,即求通过给定边界而面积为最小的曲面(美国道格拉斯等)。 提出平稳过程理论(苏联辛钦)。
*1935年 在拓扑学中引入同伦群,成为代数拓扑和微分拓扑的重要工具(波兰霍勒维奇等)。开始研究产品使用寿命和可*性的数学理论(法国龚贝尔)。
*1936年 寇尼克系统地提出与研究图的理论。50年代以后,由于在博弈论、规划论、信息论等方面的应用,贝尔治等对图的理论有很大的发展(德国寇尼克,美国贝尔治)。 现代的代数几何学开始形成(荷兰范德凡尔登、法国 外耳,美国 查里斯基,意大利 培·塞格勒等)。 提出理想的通用计算机概念,同时建立了算法理论(英国图灵,美国邱吉、克林等)。建立算子环论,可以表达量子场论数学理论中的一些概念(美籍匈牙利人 冯·诺伊曼)。提出偏微分方程中的泛函分析方法(苏联 索波列夫)。
*1937年 证明微分流形的嵌入定理,是微分拓扑学的创始(美国怀特尼)。 提出偏微分方程组的分类法,得出某些基本性质(苏联彼得洛夫斯基)。 开始系统研究随机过程的统计理论(瑞士 克拉默)。
*1938年 布尔巴基丛书《数学原本》开始出版,企图从数学公理结构出发,以非常抽象的方式叙述全部现代数学(法国布尔巴基学派)。
*1940年 证明连续统假说在集合论公理系中的无矛盾性(美国哥德尔)。提出求数值解的松弛方法(英国 绍司威尔)。提出交换群调和分析的理论(苏联 盖尔方特)。
1941-1950年
*1941年,定义流形上的调和积分,并用于代数流行,成为研究流形同调性质的分析工具(美国霍奇)。1941年,开始建立马尔可夫过程与随机微分方程的联系(苏联 谢.伯恩斯坦,日本伊藤清)。1941年,创立赋范环理论,主要用于群上调和分析和算子环论(苏联盖尔芳特)。
*1942年,开始研究随机过程的预测,滤过理论及其在火炮自动控制上的应用,由此产生了“统计动力学”(美国诺.维纳,苏联柯尔莫哥洛夫)。
*1943年,提出求代数方程数字解的林士谔方法(中国林士谔)。
*1944年,建立了对策论,即博弈论(美籍匈牙利人冯.诺伊曼等)。
*1945年,推广了古典函数的概念,创立广义函数论,对微分方程理论和泛函分析有重要作用(法国许瓦茨)。1945年,建立代数拓扑和微分几何的联系,推进了整体几何学的发展(美籍中国人 陈省身)。1945年,提出了噪声的统计理论(美国 斯.赖斯)。
*1946年, 美国莫尔电子工程学校和宾夕法尼亚大学试制成功第一架电子计算机ENIAC(设计者为埃克特、莫希莱等人)。1946年,建立现代代数几何学基础(法国外耳)。1946年,发展三角和法研究解析数论(中国 华罗庚)。1946年,建立罗伦兹群的表示理论(苏联盖尔芳特、诺伊玛克)。
*1947年,创立统计的序贯分析法(美国埃.瓦尔特)。
*1948年,造成稳态机,能在各种变化的外界条件下自行组织,已达到稳定状态。鼓吹这是人造大脑的最初雏形、机器能超过人等观点(英国阿希贝)。1948年,出版《控制论》,首次使用控制论一词(美国 诺.维纳)。1948年,提出通信的数学理论(美国申农)。1948年,总结了非线性微分方程在流体力学方面的应用,推进了这方面的研究(美籍德国人弗里得里希斯、理.柯朗)。1948年,提出范畴论,是代数中一种抽象的理论,企图将数学统一于某些原理(波兰爱伦伯克,美国 桑.麦克伦)。1948年,将泛函分析用于计算数学(苏联康脱洛维奇)。
*1949年,开始确立电子管计算机体系,通称第一代计算机。英国剑桥大学制成第一台通用电子管计算机EDSAC。
*1950年,发表《计算机和智力》一文,提出机器能思维的观点(英国图灵)。1950年,提出统计决策函数的理论(美国 埃.瓦尔特)。1950年,提出解椭圆形方程的超松弛方法,是目前电子计算机上常用的方法(英国 大.杨)。1950年,提出纤维丛的理论(美国 斯丁路特,美籍中国人 陈省身,法国 艾勒斯曼)。
1951-1960年
*1951年,五十年代以来,“组合数学”获得迅速发展,并应用于试验设计、规划理论、网络理论、信息编码等(美国埃.霍夫曼、马.霍尔等)。
*1952年,证明连续群的解析性定理(即希尔伯特第五问题)(美国蒙哥马利等)。
*1953年,提出优选法,并先后发展了多种求函数极值的方法(美国基费等)。
*1954年,发表《工程控制论》,系统总结自动控制理论的新发展(中国钱学森)。
*1955年,制定同调代数理论(法国亨.加当、格洛辛狄克,波兰爱伦伯克)。1955年,提出求数值积分的隆姆贝方法,是目前电子计算机上常用的一种方法(美国隆姆贝格)。1955年,制定线性偏微分算子的一般理论(瑞典 荷尔蒙特等)。1955年,提出解椭圆形或双线型偏微分方程的交替方向法(美国拉斯福特等)。1955年,解代数数的有理迫近问题(英国罗思)。
*1956年,提出统筹方法(又名计划评审法),是一种安排计划和组织生产的数学方法为美国杜邦公司首先采用。1956年,提出线性规划的单纯形方法(英国邓济希等)。1956年,提出解双曲型和混合型方程的积分关系法(苏联道洛尼钦)。
*1957年,发现最优控制的变分原理(苏联庞特里雅金)。1957年,创立动态规划理论,它是研究使整个生产过程达到预期的最佳目的的一种数学方法(美国贝尔曼)。1957年,以美国康纳尔实验室的“感知器”的研究为代表,开始迅速发展图像识别理论(美国 罗森伯拉特等)。
*1958年,创立算法语言ALGOL(58),后经改进又提出(ALGOL)(60),ALGOL(68)等算法语言,用于电子计算机程序自动化(欧洲GAMM小组,美国ACM小组)。1958年,中国普遍地使用和改进“线性规划”法。1958年,中国科学院计算机技术研究所试制成功中国第一架通用电子计算机。
*1959年,美国国际商业机器公司制成第一台晶体管计算机“IBM7090”。第二代计算机——半导体晶体管计算机开始迅速发展。1959—1960年,伽罗华域论在编码问题上的应用,发明BCH码(法国 霍昆亥姆,美国儿.玻色,印度 雷.可都利)。
*1960年,提出数字滤波理论,进一步发展了随机过程在制导系统中的应用(美国卡尔门)。1960年,建立非自共轭算子的系统理论(苏联 克雷因,美国 顿弗特)。
|